Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Physical properties and compact analysis of commonly used direct compression binders.

AAPS PharmSciTech 2003 December 16
This study investigated the basic physico-chemical property and binding functionality of commonly used commercial direct compression binders/fillers. The compressibility of these materials was also analyzed using compression parameters derived from the Heckel, Kawakita, and Cooper-Eaton equations. Five classes of excipients were evaluated, including microcrystalline cellulose (MCC), starch, lactose, dicalcium phosphate (DCP), and sugar. In general, the starch category exhibited the highest moisture content followed by MCC, DCP, lactose, and finally sugar; DCP displayed the highest density, followed by sugar, lactose, starch, and MCC; the material particle size is highly processing dependent. The data also demonstrated that MCC had moderate flowability, excellent compressibility, and extremely good compact hardness; with some exceptions, starch, lactose, and sugar generally exhibited moderate flowability, compressibility, and hardness; DCP had excellent flowability, but poor compressibility and hardness. This research additionally confirmed the binding mechanism that had been well documented: MCC performs as binder because of its plastic deformation under pressure; fragmentation is the predominant mechanism in the case of lactose and DCP; starch and sugar perform by both mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app