JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study.

The influence of bacterivorous nematodes (Diplolaimelloides meyli, Diplolaimelloides oschei, Diplolaimella dievengatensis, Panagrolaimus paetzoldi) on the development of a bacterial community growing on decaying cordgrass detritus was studied in laboratory microcosm experiments. Cordgrass leaves were incubated on a sediment surface with a natural bacterial mixture containing bacteria from sediment, cordgrass detritus and habitat water. The four nematode species were applied separately to the microcosms; controls remained without nematodes. Samples were taken seven times over a 65-day period. The bacterial community structure was analysed by means of DGGE of the 16S rRNA genes. Multi Dimensional Scaling showed grouping of the samples per treatment. Analysis of Similarities indicated that the differences between treatments were significantly larger than differences within treatments. Our results suggest that nematodes can have a significant structuring top-down influence on the 'pool' of bacteria growing on the detritus, even at low densities. Dissimilarities were similar between all treatments. Differences in bacterial community composition within the treatments with monhysterids (D. meyli, D. oschei and D. dievengatensis) can be explained by species-specific food preferences. Panagrolaimus paetzoldi on the other hand feeds unselectively, and thus affects the bacterial community differently. A top-down effect of the nematodes on the diversity of the bacterial community was only evident under high grazing pressure, i.e. in the presence of P. paetzoldi.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app