JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor.

Cadmium-induced cellular toxicity has been related to necrosis and/or caspase-dependent apoptosis. In the present study, we show that, on cadmium exposure, the human hepatocarcinoma Hep3B cells undergo caspase-independent apoptosis associated with nuclear translocation of endonuclease G and apoptosis-inducing factor, two mitochondrial apoptogenic proteins. Release of these proteins is likely related to calcium-induced alteration of mitochondrial homeostasis. Indeed, it was first preceded by a rapid and sustained increase in cytoplasmic calcium and then by a coincident loss in mitochondrial membrane potential and production of reactive oxygen species. Bapta-AM (acetoxymethyl ester of 5, 5'-dimethyl-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), a calcium chelator, blocked all these events and prevented cadmium-induced apoptosis. Production of reactive oxygen species was inhibited by ruthenium red and rotenone, two mitochondrial inhibitors, and by diphenyleneiodonium, a flavoprotein inhibitor, which also prevented both loss in mitochondrial membrane potential and apoptosis. In addition, Bapta-AM and diphenyleneiodonium were found to almost totally block decreased expression of the mitochondrial anti-apoptotic nuclear factor-kappaB-regulated bcl-x(L) protein in cadmium-treated cells. Taken together, our results show that cadmium induces Hep3B cells apoptosis mainly by calcium- and oxidative stress-related impairment of mitochondria, which probably favors release of apoptosis-inducing factor and endonuclease G.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app