JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis.

Hormone refractory metastatic prostate cancer remains an incurable disease. We found that high expression levels of the chemokine receptor CXCR4 correlated with the presence of metastatic disease in prostate cancer patients. Positive staining for CXCL12, the ligand for CXCR4, was mainly present in the tumor-associated blood vessels and basal cell hyperplasia. Subcutaneous xenografts of PC3 and 22Rv1 prostate tumors that overexpressed CXCR4 in NOD/SCID mice were two- to threefold larger in volume and weight vs. controls. Moreover, blood vessel density, functionality, invasiveness of tumors into the surrounding tissues, and metastasis to the lymph node and lung were significantly increased in these tumors. Neutralizing the interactions of CXCL12/CXCR4 in vivo with CXCR4 specific antibodies inhibited the CXCR4-dependent tumor growth and vascularization. In vitro, CXCL12 induced the proliferation and VEGF secretion but not migration of PC3 and 22Rv1 cells overexpressing CXCR4. Similar effects of CXCR4 overexpression on tumor growth in vivo were also noted in two breast cancer lines, suggesting that the observed effect of CXCR4 is not unique to prostate tumor cells. Thus high levels of the chemokine receptor CXCR4 induce a more aggressive phenotype in prostate cancer cells and identify CXCR4 as a potential therapeutic target in advanced cases of metastatic prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app