JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Upregulation of macula densa cyclooxygenase-2 expression is not dependent on glomerular filtration.

Although the regulation of cyclooxygenase-2 (COX-2) expression in the kidney cortex has been extensively characterized, the physiological control mechanisms of COX-2 expression at the level of the kidney and at the level of the tubular cells are not well understood. Based on the current hypothesis that tubular salt transport might be a crucial regulator of COX-2 expression, this study aimed to determine the impact of salt delivery to the tubules (glomerular filtration) for the regulation of COX-2 in the kidney cortex in vivo. To this end, glomerular filtration of the right kidney was abrogated by the ligation of the right ureter of male Sprague-Dawley rats. After 1 wk of ligation, the animals were treated with subcutaneous infusions of furosemide (12 mg x kg(-1) x day(-1)) or with a low-salt or a high-salt diet (0.02% wt/wt; 8% wt/wt), and COX-2 as well as renin mRNA expression were determined in the ligated and the nonligated contralateral kidney. During ureteral ligation, hydronephrosis developed with a reduction of medullary mass, while the cortex was preserved. Expressions of the Na-K-2Cl cotransporter isoforms A and B were both reduced in the hydronephrotic cortex to 70 and 35% of the corresponding contralateral intact kidney. Despite the abrogation of glomerular filtration, detected by inulin clearance measurements, renocortical COX-2 mRNA abundance was stimulated by furosemide treatment (3.2-fold) or low-salt diet (2.9-fold) to similar degrees compared with the intact contralateral kidney (2.7-fold for both treatments), whereas a high-salt diet did not significantly suppress COX-2 mRNA in the macula densa region of either kidney. Renin mRNA expression was regulated strictly in parallel in both kidneys, a low-salt diet or furosemide treatment stimulating and a high-salt diet suppressing it. We conclude from these findings that salt delivery to the tubules is not an essential requirement for the upregulation of COX-2 by salt deficiency or by loop diuretics in the rat kidney cortex nor is it for chronic stimulation of renin mRNA expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app