JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells.

Cancer Research 2004 June 2
It is well established that DNA hypermethylation of tumor suppressor and tumor-related genes can occur in cancer cells and that each cancer subtype has specific gene sets that are commonly susceptible to methylation and silencing. Glutathione S-transferase (GSTP1) is one example of a gene that is hypermethylated and inactivated in the majority of prostate cancers. We previously reported that hypermethylation of the GSTP1 CpG island promoter in prostate cancer cells is initiated by a combination of transcriptional gene silencing (by removal of the Sp1 sites) and seeds of methylation that, instead of being constantly removed because of demethylation associated with transcription, acts as a catalyst for the spread of methylation across the CpG island. In this study, we now demonstrate that the seeds of DNA methylation also play an important role in initiating chromatin modification. Our results address a number of central questions about the temporal relationship between gene expression, DNA hypermethylation, and chromatin modification in cancer cells. We find that for the GSTP1 gene, (a). histone acetylation is independent of gene expression, (b). histone deacetylation is triggered by seeds of DNA methylation, (c). the spread of DNA hypermethylation across the island is linked to MBD2 and not MeCP2 binding, and (d). histone methylation occurs after histone deacetylation and is associated with extensive DNA methylation of the CpG island. These findings have important implications for understanding the biochemical events underlying the mechanisms responsible for abnormal hypermethylation of CpG island-associated genes in cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app