JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA.

A previously unknown coronavirus (CoV) is the aetiological agent causing severe acute respiratory syndrome (SARS), for which an effective antiviral treatment is urgently needed. To enable the rapid and biosafe identification of coronavirus replicase inhibitors, we have generated a non-cytopathic, selectable replicon RNA (based on human CoV 229E) that can be stably maintained in eukaryotic cells. Most importantly, the replicon RNA mediates reporter gene expression as a marker for coronavirus replication. We have used a replicon RNA-containing cell line to test the inhibitory effect of several compounds that are currently being assessed for SARS treatment. Amongst those, interferon-alpha displayed the strongest inhibitory activity. Our results demonstrate that coronavirus replicon cell lines provide a versatile and safe assay for the identification of coronavirus replicase inhibitors. Once this technology is adapted to SARS-CoV replicon RNAs, it will allow high throughput screening for SARS-CoV replicase inhibitors without the need to grow infectious SARS-CoV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app