Two visual motion processing deficits in developmental dyslexia associated with different reading skills deficits

Jeremy B Wilmer, Alexandra J Richardson, Yue Chen, John F Stein
Journal of Cognitive Neuroscience 2004, 16 (4): 528-40
Developmental dyslexia is associated with deficits in the processing of visual motion stimuli, and some evidence suggests that these motion processing deficits are related to various reading subskills deficits. However, little is known about the mechanisms underlying such associations. This study lays a richer groundwork for exploration of such mechanisms by more comprehensively and rigorously characterizing the relationship between motion processing deficits and reading subskills deficits. Thirty-six adult participants, 19 of whom had a history of developmental dyslexia, completed a battery of visual, cognitive, and reading tests. This battery combined motion processing and reading subskills measures used across previous studies and added carefully matched visual processing control tasks. Results suggest that there are in fact two distinct motion processing deficits in developmental dyslexia, rather than one as assumed by previous research, and that each of these deficits is associated with a different type of reading subskills deficit. A deficit in detecting coherent motion is selectively associated with low accuracy on reading subskills tests, and a deficit in discriminating velocities is selectively associated with slow performance on these same tests. In addition, evidence from visual processing control tasks as well as self-reports of ADHD symptoms suggests that these motion processing deficits are specific to the domain of visual motion, and result neither from a broader visual deficit, nor from the sort of generalized attention deficit commonly comorbid with developmental dyslexia. Finally, dissociation between these two motion processing deficits suggests that they may have distinct neural and functional underpinnings. The two distinct patterns of motion processing and reading deficits demonstrated by this study may reflect separable underlying neurocognitive mechanisms of developmental dyslexia.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"