JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of insulin, contraction, and phorbol esters on mitogen-activated protein kinase signaling in skeletal muscle from lean and ob/ob mice.

Diabetes 2004 June
Effects of diverse stimuli, including insulin, muscle contraction, and phorbol 12-myristate-13-acetate (PMA), were determined on phosphorylation of mitogen-activated protein kinase (MAPK) signaling modules (c-Jun NH(2)-terminal kinase [JNK], p38 MAPK, and extracellular signal-related kinase [ERK1/2]) in skeletal muscle from lean and ob/ob mice. Insulin increased phosphorylation of JNK, p38 MAPK, and ERK1/2 in isolated extensor digitorum longus (EDL) and soleus muscle from lean mice in a time- and dose-dependent manner. Muscle contraction and PMA also elicited robust effects on these parallel MAPK modules. Insulin action on JNK, p38 MAPK, and ERK1/2 phosphorylation was significantly impaired in EDL and soleus muscle from ob/ob mice. In contrast, muscle contraction-mediated JNK, p38 MAPK, and ERK1/2 phosphorylation was preserved. PMA effects on phosphorylation of JNK and ERK1/2 were normal in ob/ob mice, whereas effects on p38 MAPK were abolished. In conclusion, insulin, contraction, and PMA activate MAPK signaling in skeletal muscle. Insulin-mediated responses on MAPK signaling are impaired in skeletal muscle from ob/ob mice, whereas the effect of contraction is generally well preserved. In addition, PMA-induced phosphorylation of JNK and ERK1/2 are preserved, whereas p38 MAPK pathways are impaired in skeletal muscle from ob/ob mice. Thus, appropriate MAPK responses can be elicited in insulin-resistant skeletal muscle via an insulin-independent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app