JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner.

Plant Cell 2004 June
Several genes belonging to the MADS box transcription factor family have been shown to be involved in the transition from vegetative to reproductive growth. The Petunia hybrida MADS box gene UNSHAVEN (UNS) shares sequence similarity with the Arabidopsis thaliana flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1, is expressed in vegetative tissues, and is downregulated upon floral initiation and the formation of floral meristems. To understand the role of UNS in the flowering process, knockout mutants were identified and UNS was expressed ectopically in petunia and Arabidopsis. No phenotype was observed in petunia plants in which UNS was disrupted by transposon insertion, indicating that its function is redundant. Constitutive expression of UNS leads to an acceleration of flowering and to the unshaven floral phenotype, which is characterized by ectopic trichome formation on floral organs and conversion of petals into organs with leaf-like features. The same floral phenotype, accompanied by a delay in flowering, was obtained when a truncated version of UNS, lacking the MADS box domain, was introduced. We demonstrated that the truncated protein is not translocated to the nucleus. Using the overexpression approach with both the full-length and the nonfunctional truncated UNS protein, we could distinguish between phenotypic alterations because of a dominant-negative action of the protein and because of its native function in promoting floral transition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app