UCN-01-induced cell cycle arrest requires the transcriptional induction of p21(waf1/cip1) by activation of mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway

Maria M Facchinetti, Adriana De Siervi, Doreen Toskos, Adrian M Senderowicz
Cancer Research 2004 May 15, 64 (10): 3629-37
The small molecule UCN-01 is a cyclin-dependent kinase (CDK) modulator shown to have antiproliferative effects against several in vitro and in vivo cancer models currently being tested in human clinical trials. Although UCN-01 may inhibit several serine-threonine kinases, the exact mechanism by which it promotes cell cycle arrest is still unclear. We have reported previously that UCN-01 promotes G(1)-S cell cycle arrest in a battery of head and neck squamous cancer cell lines. The arrest is accompanied by an increase in both p21(waf1/cip1) and p27(kip1) CDK inhibitors leading to loss in G(1) CDK activity. In this report, we explore the role and the mechanism for the induction of these endogenous CDK inhibitors. We observed that p21 was required for the cell cycle effects of UCN-01, as HCT116 lacking p21 (HCT116 p21(-/-)) was refractory to the cell cycle effects of UCN-01. Moreover, UCN-01 promoted the accumulation of p21 at the mRNA level in the p53-deficient HaCaT cells without increase in the p21 mRNA half-life, suggesting that UCN-01 induced p21 at the transcriptional level. To study UCN-01 transcriptional activation of p21, we used several p21(waf1/cip1) promoter-driven luciferase reporter plasmids and observed that UCN-01 activated the full-length p21(waf1/cip1) promoter and a construct lacking p53 binding sites. The minimal promoter region required for UCN-01 (from -110 bp to the transcription start site) was the same minimal p21(waf1/cip1) promoter region required for Ras enhancement of p21(waf1/cip1) transcription. Neither protein kinase C nor PDK1/AKT pathways were relevant for the induction of p21 by UCN-01. In contrast, the activation of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase mitogen-activated protein kinase pathways was required for p21 induction as UCN-01 activated this pathway, and genetic or chemical MEK inhibitors blunted p21 accumulation. These results demonstrated for the first time that p21 is required for UCN-01 cell cycle arrest. Moreover, we showed that the accumulation of p21 is transcriptional via activation of the MEK pathway. This novel mechanism, by which UCN-01 exerts its antiproliferative effect, represents a promising strategy to be exploited in future clinical trials.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"