COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.

Biomaterials 2004 November
Even though degradation products of biodegradable polymers are known to be largely non-cytotoxic, little detailed information is available regarding the degradation rate-dependent acidic byproduct effect of the scaffold. In vitro and in vivo scaffold degradation rate could be differentiated using a fast degrading polymer (e.g., poly D, L-lactic-glycolic acid co-polymer, PLGA, 50:50) and a slow degrading polymer (e.g., poly epsilon-caprolactone, PCL). We applied a new method to develop uniform 10 microm thickness of high porous scaffolds using a computer-controlled knife coater with a motion stage and exploiting phase transition properties of a combination of salts and water in salt-leaching method. We then verified in vitro the effect of fast degradation by assessing the viability of primary mouse aortic smooth muscle cell cultured in the three-dimensional scaffolds. We found that cell viability was inversely related to degradation rate and was dependent on the depth from the seeding (upper) surface toward the lower surface. The pH measurement of culture medium using fluorescence probes showed time-dependent decrease in pH in the PLGA scaffolds, corresponding to PLGA degradation, and closely related to cell viability. In vivo analysis of scaffolds implanted subcutaneously into the back of mice, showed significant differences in inflammation and cell invasion into PLGA vs. PCL. Importantly, these were correlated with the degree of the functional angiogenesis within the scaffolds. Again, PLGA scaffolds demonstrated less cell mobilization and less angiogenesis, further supporting the negative effect of the acidic environment created by the degradation of biocompatible polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app