Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

t(1;14) and t(11;18) in the differential diagnosis of Waldenström's macroglobulinemia.

Modern Pathology 2004 September
Waldenström's macroglobulinemia is caused by several B-cell proliferative disorders including lymphoplasmacytic lymphoma, marginal zone B-cell lymphoma, B-cell chronic lymphocytic leukemia and multiple myeloma. Differential diagnosis between lymphoplasmacytic lymphoma and extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue is particularly difficult as there is a considerable overlap in histological presentation. We report a case of Waldenström's macroglobulinemia with involvement of the peripheral blood, bone marrow and stomach. Serum chemistry revealed an IgM of 5.4 g/dl, but Bence-Jones protein in urine was negative. Abnormal lymphoid cells were detected in both blood and the bone marrow. Flow cytometry of the bone marrow aspirate showed that majority of cells were CD20(+), CD38(+), expressing immunoglobulin lambda light chain, but CD5(-) and CD10(-). Gastric biopsies revealed infiltration of the gastric mucosa by small lymphoid cells showing plasmacytoid differentiation and occasional Dutcher bodies. Lymphoepithelial lesions and Helicobacter pylori were not seen. Thus, the differential diagnosis between lymphoplasmacytic lymphoma and mucosa-associated lymphoid tissue lymphoma was raised. To resolve this, we performed BCL10 immunohistochemistry and reverse transcriptional polymerase chain reaction (RT-PCR) for the API2-MALT1 fusion transcript of t(11;18)(q21;q21). Both bone marrow and gastric biopsies showed strong BCL10 nuclear staining, similar to that seen in t(1;14)(p22;q32) positive mucosa-associated lymphoid tissue lymphoma, but absence of the API2-MALT1 fusion transcript. To further ascertain whether the detection of t(1;14)(p22;q32) and t(11;18)(q21;q21) can be reliably used for the differential diagnosis between lymphoplasmacytic lymphoma and mucosa-associated lymphoid tissue lymphoma, we screened for these translocations by BCL10 immunohistochemistry in 58 lymphoplasmacytic lymphomas and RT-PCR for t(11;18)(q21;q21) in 40 lymphoplasmacytic lymphomas, respectively. None of the lymphoplasmacytic lymphomas studied harbored these translocations. Thus, detection of t(1;14)(p22;q32) and t(11;18)(q21;q21) is useful in the differential diagnosis between lymphoplasmacytic lymphoma and mucosa-associated lymphoid tissue lymphoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app