EVALUATION STUDIES
JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device.

The labelfree detection of nucleic acid sequences is one of the modern attempts to develop quick, cheap and miniaturised hand-held devices for the future genetic testing in biotechnology and medical diagnostics. We present an approach to detect the hybridisation of DNA sequences using electrolyte-oxide-semiconductor field-effect transistors (EOSFETs) with micrometer dimensions. These semiconductor devices are sensitive to electrical charge variations that occur at the surface/electrolyte interface, i.e. upon hybridisation of oligonucleotides with complementary single-stranded (ss) oligonucleotides, which are immobilised on the oxide surface of the transistor gate. This method allows direct, time-resolved and in situ detection of specific nucleic acid binding events without any labelling. We focus on the detection mechanism of our sensors by using oppositely charged polyelectrolytes (PAH and PSS) subsequently attached to the transistor structures. Our results indicate that the sensor output is charge sensitive and distance dependent from the gate surface, which pinpoints the need for very defined surface chemistry at the device surface. The hybridisation of natural 19 base-pair sequences has been successfully detected with the sensors. In combination with nano-transistors a PCR free detection system might be feasible in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app