CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of ACE inhibition and AT1-receptor blockade on haemodynamic responses to L-arginine in Type 1 diabetes.

INTRODUCTION: Angiotensin-converting enzyme (ACE) inhibitors have been shown to improve endothelial function in Type 1 diabetes. However, the potential of ACE inhibitors (ACE-I) to enhance the haemodynamic effects of L-arginine (L-arg), the precursor of nitric oxide (NO), has not been evaluated. Furthermore, angiotensin receptor blockers (ARBs), another group of inhibitors of the renin-angiotensin system (RAS), have not been studied in this context.

METHODS: Using a randomised, crossover design, the acute effects of L-arg (200 mg/kg) on blood pressure (BP) and renal haemodynamics were determined in uncomplicated Type 1 diabetic patients before and after three weeks of treatment with the ACE-I ramipril (5 mg/day) or the ARB losartan (50 mg/day).

RESULTS: L-arg alone did not influence BP or renal haemodynamics. BP responses to L-arg were not modulated by ACE-I or ARB. In contrast to the systemic responses, L-arg induced significant renal vasodilation after treatment with ramipril (p<0.05). Unlike ramipril, losartan did not modulate renal haemodynamic responses to L-arg. L-arg administration was paralleled by increments in plasma L-citrulline levels, determined as a measure of L-arg-induced systemic NO production. These responses were not influenced by RAS inhibitors. No changes in other indicators of the systemic and renal NO production, such as plasma and urinary nitrates/nitrites, were detected in response to L-arg alone or after treatment with RAS inhibitors.

CONCLUSIONS: ACE-Is have greater potential than ARBs to enhance L-arg effects in the kidney in uncomplicated Type 1 diabetes. Neither RAS inhibitor influenced the systemic effects of L-arg. The lack of changes in renal NO indicators parallelling the haemodynamic responses, suggests that the effects of ACE-I on L-arg-induced renal haemodynamic changes could be also attributable to NO-independent mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app