Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering

Anu Subramanian, Hsin-Yi Lin, David Vu, Gustavo Larsen
Biomedical Sciences Instrumentation 2004, 40: 117-22
Tissue engineering concepts and methodologies that employ biocompatible matrices or scaffolds have the potential to meet needs encountered in the repair of defects in articular cartilage. A desirable design parameter in the tissue engineering of cartilage in vitro is the development of seeded scaffolds with appropriate structure, composition, mechanical properties and durability that are similar to normal articular cartilage. Previous methods that have used freeze drying and lyophilization techniques to make foams and hydrogels have not met the scaffold characteristics (porosity, compressive elastic modulus, permeability and viscoelastic properties), which are required of scaffolds slated for use in cartilage tissue engineering applications. Thus there is an impetus to design and develop biomimetic scaffolds that mimic the native ECM of articular cartilage, and distribute strain in a bioresponsive manner to signal seeded chondrocytes to synthesize and organize ECM to result in material properties that are in range of natural cartilage. We have employed the method of electrospinning to prepare scaffolds with oriented and random fiber alignment.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"