Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exposure to L-ascorbic acid or alpha-tocopherol facilitates the development of porcine denuded oocytes from metaphase I to metaphase II and prevents cumulus cells from fragmentation.

It is known that alpha-tocopherol (vitamin E) and L-ascorbic acid (vitamin C) can modulate many biochemical processes intracellularly or extracellularly as antioxidants. The objective of the present study was to investigate the effects of alpha-tocopherol and L-ascorbic acid on porcine oocyte meiotic maturation, viability and the functions of cumulus cells. In two independent experiments, porcine oocytes with or free from cumulus cells were exposed to different levels of alpha-tocopherol (0, 10, 100 and 200 microM) or L-ascorbic acid (0, 50, 250 and 750 microM). Cumulus expansion, cumulus cell DNA fragmentation, meiotic maturation and degeneration of oocytes were assessed 48 h after in vitro culture. The results showed that: (1) neither alpha-tocopherol nor L-ascorbic acid influenced cumulus expansion but both prevented cumulus cell DNA fragmentation. (2) Alpha-tocopherol lowered the percentage of denuded oocytes (DOs) arrested at germinal vesicle stage (GV). Among the oocytes undergoing germinal vesicle breakdown (GVBD) proportion, fewer DOs treated by alpha-tocopherol were at metaphase I (MI) and more at metaphase II (MII). L-ascorbic acid caused lower percentage of DOs arrested at GV stage and higher percentage of DOs undergoing GVBD, especially at MII. The influences of alpha-tocopherol and L-ascorbic acid were not obvious in cumulus-enclosed oocytes (CEOs). (3) Both vitamins compromised the viability of CEOs and DOs. These results indicate that exposure to alpha-tocopherol or L-ascorbic acid promotes the development of porcine DOs from MI to MII and prevents cumulus cell DNA fragmentation at certain levels, especially 10 microM alpha-tocopherol or 250 microM L-ascorbic acid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app