COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effect of hypoxia on pulmonary O2 uptake, leg blood flow and muscle deoxygenation during single-leg knee-extension exercise.

The effect of hypoxic breathing on pulmonary O(2) uptake (VO(2p)), leg blood flow (LBF) and O(2) delivery and deoxygenation of the vastus lateralis muscle was examined during constant-load single-leg knee-extension exercise. Seven subjects (24 +/- 4 years; mean +/-s.d.) performed two transitions from unloaded to moderate-intensity exercise (21 W) under normoxic and hypoxic (P(ET)O(2)= 60 mmHg) conditions. Breath-by-breath VO(2p) and beat-by-beat femoral artery mean blood velocity (MBV) were measured by mass spectrometer and volume turbine and Doppler ultrasound (VingMed, CFM 750), respectively. Deoxy-(HHb), oxy-, and total haemoglobin/myoglobin were measured continuously by near-infrared spectroscopy (NIRS; Hamamatsu NIRO-300). VO(2p) data were filtered and averaged to 5 s bins at 20, 40, 60, 120, 180 and 300 s. MBV data were filtered and averaged to 2 s bins (1 contraction cycle). LBF was calculated for each contraction cycle and averaged to 5 s bins at 20, 40, 60, 120, 180 and 300 s. VO(2p) was significantly lower in hypoxia throughout the period of 20, 40, 60 and 120 s of the exercise on-transient. LBF (l min(-1)) was approximately 35% higher (P > 0.05) in hypoxia during the on-transient and steady-state of KE exercise, resulting in a similar leg O(2) delivery in hypoxia and normoxia. Local muscle deoxygenation (HHb) was similar in hypoxia and normoxia. These results suggest that factors other than O(2) delivery, possibly the diffusion of O(2,) were responsible for the lower O(2) uptake during the exercise on-transient in hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app