Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle.

Mechanoelectric feedback (MEF) is the process by which mechanical forces on the myocardium induce electrical responses. It is thought that MEF is important in controlling the beat to beat force of contraction in the ventricle, in response to fluctuations in load, and it may also play a role in controlling the dispersion of repolarization. The transduction mechanism for MEF is via stretch sensitive ion channels in the surface membrane of myocytes. Two types of stretch sensitive channels have been described; a non-selective cation channel, and a potassium selective channel. TREK-1 is a member of the recently cloned tandem pore potassium channels that has been shown to be mechanosensitive and to be expressed in rat heart. Here we report that the gene expression level of TREK-1, quantified using real-time RT-PCR against glyceraldehyde phosphate dehydrogenase (GAPDH) as a comparator gene, was found to be 0.34 +/- 0.14 in endocardial cells compared to 0.02 +/- 0.02 in epicardial cells (P < 0.05). To confirm that this is reflected in a different current density, whole cell TREK-1 currents, activated by chloroform, were recorded with patch clamp techniques in epicardial and endocardial cells. TREK-1 current density in epicardial and endocardial cells was 0.21 +/- 0.06 pA/pF and 0.8 +/- 0.27 pA/pF, respectively (P

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app