JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought.

Tree Physiology 2004 July
Holm oak (Quercus ilex L.) is native to hot, dry Mediterranean forests where limited water availability often reduces photosynthesis in many species, and forest fires are frequent. Holm oaks resprout after a disturbance, with improved photosynthetic activity and water relations compared with unburned plants. To better understand the role of water availability in this improvement, watering was withheld from container-grown plants, either intact (controls) or resprouts after excision of the shoot, to gradually obtain a wide range of soil water availabilities. At high water availability, gas exchange rates did not differ between controls and resprouts. At moderate soil dryness, net photosynthesis of control plants decreased as a result of increased stomatal limitation, whereas gas exchange rates of resprouts, which had higher midday and predawn leaf water potentials, were unchanged. Under severe drought, resprouts showed a less marked decline in gas exchange than controls and maintained photosystem II integrity, as indicated by chlorophyll fluorescence measurements. Photosynthesis was down-regulated in both plant types in response to reduced CO2 availability caused by high stomatal limitation. Lower non-stomatal limitations in resprouts than in control plants, as evidenced by higher carboxylation velocity and the capacity for ribulose-1,5-bisphosphate regeneration, conferred greater drought resistance under external constraints similar to summer conditions at midday.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app