Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Evaluation of 3-hydroxy-3-methylglutaryl-coenzyme A lyase arginine-41 as a catalytic residue: use of acetyldithio-coenzyme A to monitor product enolization.

Biochemistry 2004 May 12
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to produce acetyl-CoA and acetoacetate. Arginine-41 is an invariant residue in HMG-CoA lyases. Mutation of this residue (R41Q) correlates with human HMG-CoA lyase deficiency. To evaluate the functional importance of arginine-41, R41Q and R41M recombinant mutant human HMG-CoA lyase proteins have been constructed, expressed, and purified. These mutant proteins retain structural integrity based on Mn(2+) binding and affinity labeling stoichiometry. R41Q exhibits a 10(5)-fold decrease in V(max); R41M activity is >or=10-fold lower than the activity of R41Q. Acetyldithio-CoA, an analogue of the reaction product, acetyl-CoA, has been employed to test the function of arginine-41, as well as other residues (e.g., aspartate-42 and histidine-233) implicated in catalysis. Acetyldithio-CoA supports enzyme-catalyzed exchange of the methyl protons of the acetyl group with solvent; exchange is dependent on the presence of Mg(2+) and acetoacetate. In comparison with wild-type human enzyme, D42A and H233A mutant enzymes exhibit 4-fold and 10-fold decreases, respectively, in the proton exchange rate. In contrast, R41Q and R41M mutants do not catalyze any substantial enzyme-dependent proton exchange. These results suggest a role for arginine-41 in deprotonation or enolization of acetyldithio-CoA and implicate this residue in the HMG-CoA cleavage reaction chemistry that leads to acetyl-CoA product formation. Assignment of arginine-41 as an active site residue is also supported by a homology model for HMG-CoA lyase based on the structure of 4-hydroxy-2-ketovalerate aldolase. This model suggests the proximity of arginine-41 to other amino acids (aspartate-42, glutamate-72, histidine-235) implicated as active site residues based on their function as ligands to the activator cation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app