VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus

De-Pei Li, Shao-Rui Chen, Hui-Lin Pan
Journal of Neurophysiology 2004, 92 (3): 1807-16
Neurons in the paraventricular nucleus (PVN) are important in regulating autonomic function through projections to the brain stem and spinal cord. Although the vanilloid receptors (VR(1)) are present in the PVN, their physiological function is scarcely known. In this study, we determined the role of VR(1) receptors in the regulation of synaptic inputs and the excitability of spinally projecting PVN neurons. Whole cell patch-clamp recordings were performed on the PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Capsaicin significantly increased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) without changing the amplitude and decay time constant of mEPSCs. On the other hand, capsaicin had no effect on GABAergic miniature inhibitory postsynaptic currents (mIPSCs). The effect of capsaicin on mEPSCs was abolished by a specific VR(1) antagonist, iodo-resiniferatoxin (iodo-RTX), or ruthenium red. Importantly, iodo-RTX per se significantly reduced the amplitude of evoked EPSCs and the frequency of mEPSCs. Removal of extracellular Ca(2+), but not Cd(2+) treatment, also eliminated the effect of capsaicin on mEPSCs. Furthermore, capsaicin caused a large increase in the firing rate of PVN neurons, and such an effect was abolished in the presence of ionotropic glutamate receptor antagonists. Additionally, the double-immunofluorescence labeling revealed that all of the VR(1) immunoreactivity was colocalized with a presynaptic marker, synaptophysin, in the PVN. Thus this study provides the first evidence that activation of VR(1) receptors excites preautonomic PVN neurons through selective potentiation of glutamatergic synaptic inputs. Presynaptic VR(1) receptors and endogenous capsaicin-like substances in the PVN may represent a previously unidentified mechanism in hypothalamic regulation of the autonomic nervous system.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"