Making a molecular wire: charge and spin transport through para-phenylene oligomers

Emily A Weiss, Michael J Ahrens, Louise E Sinks, Alexey V Gusev, Mark A Ratner, Michael R Wasielewski
Journal of the American Chemical Society 2004 May 5, 126 (17): 5577-84
Functional molecular wires are essential for the development of molecular electronics. Charge transport through molecules occurs primarily by means of two mechanisms, coherent superexchange and incoherent charge hopping. Rates of charge transport through molecules in which superexchange dominates decrease approximately exponentially with distance, which precludes using these molecules as effective molecular wires. In contrast, charge transport rates through molecules in which incoherent charge hopping prevails should display nearly distance independent, wirelike behavior. We are now able to determine how each mechanism contributes to the overall charge transport characteristics of a donor-bridge-acceptor (D-B-A) system, where D = phenothiazine (PTZ), B = p-oligophenylene, and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), by measuring the interaction between two unpaired spins within the system's charge separated state via magnetic field effects on the yield of radical pair and triplet recombination product.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"