JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders.

Membrane lipid peroxidation and oxidative modification of various membrane and associated proteins (e.g., receptors, ion transporters and channels, and signal transduction and cytoskeletal proteins) occur in a range of neurodegenerative disorders. This membrane-associated oxidative stress (MAOS) is promoted by redox-active metals, most notably iron and copper. The mechanisms whereby different genetic and environmental factors initiate MAOS in specific neurological disorders are being elucidated. In Alzheimer's disease (AD), the amyloid beta-peptide generates reactive oxygen species and induces MAOS, resulting in disruption of cellular calcium homeostasis. In Parkinson's disease (PD), mitochondrial toxins and perturbed ubiquitin-dependent proteolysis may impair ATP production and increase oxyradical production and MAOS. The inheritance of polyglutamine-expanded huntingtin may promote neuronal degeneration in Huntington's disease (HD), in part, by increasing MAOS. Increased MAOS occurs in amyotrophic lateral sclerosis (ALS) as the result of genetic abnormalities (e.g., Cu/Zn-superoxide dismutase mutations) or exposure to environmental toxins. Levels of iron are increased in vulnerable neuronal populations in AD and PD, and dietary and pharmacological manipulations of iron and copper modify the course of the disease in mouse models of AD and PD in ways that suggest a role for these metals in disease pathogenesis. An increasing number of pharmacological and dietary interventions are being identified that can suppress MAOS and neuronal damage and improve functional outcome in animal models of AD, PD, HD, and ALS. Novel preventative and therapeutic approaches for neurodegenerative disorders are emerging from basic research on the molecular and cellular actions of metals and MAOS in neural cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app