OPEN IN READ APP
JOURNAL ARTICLE

Folding of beta/alpha-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (beta/alpha)8-barrel

Anshuman Shukla, Purnananda Guptasarma
Proteins 2004 May 15, 55 (3): 548-57
15103619
The (beta/alpha)(8)-barrel domain consists of eight topologically equivalent supersecondary structural motifs known as beta/alpha-units. Each unit consists of a single beta-strand, an alpha-helix, and two loops. Evidence collected in recent years indicates that the (beta/alpha)(8)-barrel motif may not be a single, autonomously-folding domain, as was previously assumed. Segments of some (beta/alpha)(8)-barrels appear to fold autonomously. However, the extent to which this is true of various (beta/alpha)(8)-barrel domains remains to be explored. In this study, we have scrambled (reshuffled) the native order of beta/alpha-units (1-2-3-4-5-6-7-8) comprising the polypeptide chain of a model (beta/alpha)(8)-barrel from S. cerevisiae, triosephosphate isomerase (TIM). Total scrambling was effected in order to examine whether folding can still occur to yield beta/alpha-structures in spite of a global 'destruction' of native hydrophobic and hydrogen bonding interactions among beta/alpha-units, while still allowing the occurrence of native interactions within individual units. Our results demonstrate that scrambled full-barrel forms (2-4-6-8-1-3-5-7 and 1-3-5-7-2-4-6-8), as well as half-barrel (2-4-6-8) and quarter-barrel (1-3) forms of TIM fold into beta/alpha-structures that sustain tertiary and quaternary structural interactions. In particular, one variant (2-4-6-8-1-3-5-7) was found to fold and form a stable dimer with native-like structural content and other characteristics. Our results demonstrate that (beta/alpha)(8)-barrels can tolerate profound alterations of both strand-strand interactions responsible for the creation of the beta-barrel and the geometry of presentation of nonpolar sidechains into the hydrophobic core of the beta-barrel by individual beta-strands. These findings lend support to our recent proposal1 that a hierarchy of interactions probably regulates structure formation and stability in (beta/alpha)(8)-barrels, where folding proceeds successively through three stages: (i) the tentative formation of individual beta/alpha-units which associate through 'near-neighbor' diffusion-collision interactions into (ii) curved assemblies of multiple beta/alpha-units through sequence-independent hydrogen bonding of strands of neighboring units, leading finally to (iii) the association of curved (quarter/half-barrel) assemblies around a common hydrophobic core through packing interactions that remain plastic and amenable to change.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
15103619
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"