Stable down-regulation of human polynucleotide kinase enhances spontaneous mutation frequency and sensitizes cells to genotoxic agents

Aghdass Rasouli-Nia, Feridoun Karimi-Busheri, Michael Weinfeld
Proceedings of the National Academy of Sciences of the United States of America 2004 May 4, 101 (18): 6905-10
Human polynucleotide kinase (hPNK) is a 57.1-kDa monomeric protein with conserved motifs associated with phosphatase and kinase activities. hPNK catalyzes phosphorylation of 5'-DNA termini and dephosphorylation of 3'-DNA termini. Previous studies, employing cell-free systems, have suggested that hPNK participates in the repair of DNA strand breaks. To better define the cellular function of hPNK, a double-stranded small-interfering RNA molecule designed to stably target hPNK transcription was introduced into A549 human lung adenocarcinoma cells. The small-interfering RNA suppressed hPNK gene expression by at least 80-90%. These cells exhibited a 7-fold higher spontaneous mutation frequency based on the development of resistance to ouabain; elevated sensitivity to a broad range of genotoxic agents including gamma-radiation, UVC radiation, methyl methanesulfonate, hydrogen peroxide, and camptothecin; and slower repair of radiation-induced DNA strand breaks. These findings underscore the importance of hPNK in the maintenance of DNA integrity after damage induced by endogenous and exogenous agents.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"