Add like
Add dislike
Add to saved papers

The fate of metal contaminated sediments in Foundry Cove, New York.

The distribution of heavy metal contaminated sediments in Foundry Cove, a freshwater embayment of the Hudson River, was examined twelve years after the discharging of wastes from a battery factory had ceased. Concentrations of Cd, Ni and Co were measured in surficial sediments (top 5 cm) and seven detailed depth profiles. Comparison with earlier surveys showed that metal levels of surficial sediments have been considerably reduced throughout the cove. Evidence suggests that this reduction may be largely due to burial rather than transport of metals out of the cove or a redistribution (via sediment resuspension and redeposition) within the cove. This is suggested by the presence of a peak in metal concentrations at a depth of several centimetres in depositional environments, a calculation showing the loss of waterborne cadmium to be much less than the amount of cadmium lost from the surficial sediment, and the absence of increased pollution in the cleaner parts of the cove. Despite improvement, metal levels remain extremely high, including a persistent 'hot-spot' with levels higher than 10 000 ppm Cd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app