Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate.

Carcinogenesis 2004 September
Although (-)-epigallocatechin gallate (EGCG) has been reported to induce apoptosis in a variety of tumor cells, detailed mechanisms remain to be explored. In the present study, we investigated the antitumor mechanism of EGCG by using human T-cell acute lymphoblastic leukemia Jurkat cells. We focused on the involvement of reactive oxygen species, as we found previously that EGCG caused apoptotic cell death in osteoclastic cells due mainly to promotion of the reduction of Fe(III) to Fe(II) to trigger Fenton reaction, which affords hydroxyl radical from hydrogen peroxide [H(2)O(2) + Fe(II) --> (*)OH + OH(-) + Fe(III)]. EGCG (12.5-50 micro M) decreased the viability of Jurkat cells and caused concomitant increase in cellular caspase-3 activity. Catalase and the Fe(II)-chelating reagent o-phenanthroline suppressed the EGCG effects, indicating involvements of both H(2)O(2) and Fe(II) in the mechanism. Unexpectedly, epicatechin gallate (ECG), which has Fe(III)-reducing potency comparable with EGCG, failed to decrease the viability of Jurkat cells, while epigallocatechin (EGC), which has low capacity to reduce Fe(III), showed cytotoxic effects similar to EGCG. These results suggest that, unlike in osteoclastic cells, a mechanism other than Fe(III) reduction plays a role in catechin-mediated Jurkat cell death. We found that EGCG causes an elevation of H(2)O(2) levels in Jurkat cell culture, in cell-free culture medium and sodium phosphate buffer. Catechins with a higher ability to produce H(2)O(2) were more cytotoxic to Jurkat cells. Hydrogen peroxide itself exerted Fe(II)-dependent cytotoxicity. Amongst tumor and normal cell lines tested, cells exhibiting lower H(2)O(2)-eliminating activity were more sensitive to EGCG. From these findings, we propose the mechanism that make catechins cytotoxic in certain tumor cells is due to their ability to produce H(2)O(2) and that the resulting increase in H(2)O(2) levels triggers Fe(II)-dependent formation of highly toxic hydroxyl radical, which in turn induces apoptotic cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app