Modulation by adenosine of Adelta and C primary-afferent glutamatergic transmission in adult rat substantia gelatinosa neurons

L-J Lao, Y Kawasaki, K Yang, T Fujita, E Kumamoto
Neuroscience 2004, 125 (1): 221-31
The present study examined the actions of adenosine on monosynaptic Adelta and C primary-afferent excitatory postsynaptic currents (EPSCs) recorded from substantia gelatinosa (SG) neurons of an adult rat spinal cord slice. In 67% of the neurons examined, adenosine reversibly decreased the amplitude of the Adelta-fiber EPSC, while in 13% of the neurons the amplitude was reduced or unaffected, which was followed by its increase persisting for several minutes after adenosine washout. The remaining neurons did not exhibit a change in the amplitude. The reduction in Adelta-fiber EPSC amplitude by adenosine was dose-dependent with an effective concentration for half-inhibition (EC50) value of 217 microM. When examined by using a paired-pulse stimulus, a ratio of the second to first Adelta-fiber EPSC amplitude under the reduction was larger than that of EPSC amplitude in the control, suggesting a presynaptic action of adenosine. In 69% of the neurons tested, the C-fiber EPSC was reversibly decreased in amplitude by adenosine (100 microM) by an extent comparable to that of Adelta-fiber EPSC; the remaining neurons were without adenosine actions. Similar inhibitory actions of adenosine were also seen in neurons where both Adelta-fiber and C-fiber EPSCs were elicited. Similar reduction in the Adelta-fiber or C-fiber EPSC amplitude was induced by an A1 adenosine-receptor agonist, N6-cyclopentyladenosine (1 microM), and the adenosine-induced reduction was not observed in the presence of an A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (1 microM). An A2a agonist, CGS 21680 (1 microM), did not significantly affect the Adelta-fiber EPSC amplitude. It is concluded that adenosine presynaptically inhibits monosynaptic Adelta-fiber and C-fiber transmission by a similar extent through the activation of the A1 receptor in many but not all SG neurons; this could contribute to at least a part of antinociception by intrathecally administered adenosine analogues and probably by endogenous adenosine.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"