Add like
Add dislike
Add to saved papers

Induction of hTERT expression and phosphorylation by estrogen via Akt cascade in human ovarian cancer cell lines.

Oncogene 2004 June 4
We examined the mechanism by which estrogen regulates telomerase activity in Caov-3 human ovarian cancer cell lines, which express ER, to determine whether the regulation affects the expression and/or phosphorylation of the telomerase catalytic subunit (hTERT). 17beta-Estradiol (E(2)) induced telomerase activity and hTERT expression. Transient expression assays using luciferase reporter plasmids containing various fragments of hTERT promoter showed that the estrogen-responsive element appeared to be partially responsible for the E(2)-induced activation of the hTERT promoter. Either pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, or transfection with a dominant-negative Akt attenuated the E(2)-induced activation of the hTERT promoter. In addition, estrogen induced the phosphorylation of IkappaB inhibitor protein via the Akt cascade, and cotransfection with a dominant-negative subunit of NFkappaB attenuated the response of the ERE-deleted hTERT promoter to E(2). Moreover, E(2) induced the phosphorylation of hTERT, the association of 14-3-3 protein and NFkappaB with hTERT, and nuclear accumulation of hTERT in an Akt-dependent manner. These results indicate that E(2) induces telomerase activity not only by transcriptional regulation of hTERT via an ERE-dependent mechanism and a PI3K/Akt/NFkappaB cascade, but also by post-transcriptional regulation via Akt-dependent phosphorylation of hTERT. Thus, the phosphorylation of Akt is a key event in the induction of telomerase activity by E(2) in human ovarian cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app