JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protective effect of methyl gallate from Toona sinensis (Meliaceae) against hydrogen peroxide-induced oxidative stress and DNA damage in MDCK cells.

Methyl gallate (MG) has been shown to be an effective antioxidant in a variety of acellular experiments. Accordingly, this study was designed to assess the ability of MG, extracting from Toona sinensis to protect cultured Madin-Darby canine kidney (MDCK) cells against hydrogen peroxide (H2O2)-mediated oxidative stress. Trolox, a cell permeable and water-soluble vitamin E analogue, was included for comparison. First, when MDCK cells were pretreated with MG and trolox for 1 h, followed by exposing to H2O2 (0.8 mM) for an additional hour, we found that the intracellular peroxide productions, as reflected by dichlorofluorescein (DCF) fluorescence, were shown to be decreased in a concentration-dependent manner. Furthermore, using C11-BODIPY581/591 as a lipid peroxidation probe, we also found that MG, in a concentration of 100 microM, could alleviate lipid peroxidation of the cells exposed to a short-term H2O2 treatment. In addition, MG-treated cells could prevent intracellular glutathione (GSH) from being depleted following an exposure of H2O2 (8.0 mM) for a 3 h period. Next, we also examined the effect of MG on H2O2-mediated oxidative damage to DNA. Using 8-oxoguanine as an indicator for oxidative DNA damage, we demonstrated that the percentage of MDCK cells containing 8-oxoguanine was drastically increased by exposing to H2O2 (40 mM) for 3 h. However, 8-oxoguanine contents were shown to be significantly decreased in the presence of MG prior to H2O2 exposure. Comparatively, MG was shown to be a better protective agent against oxidative damage to DNA as compared to trolox. Taken together, our data suggest that MG is effective in preventing H2O2-induced oxidative stress and DNA damage in MDCK cells. The underlying mechanisms involved scavenging of intracellular reactive oxygen species (ROS), inhibition of lipid peroxidation and prevention of intracellular GSH depletion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app