Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

YB-1 is upregulated during prostate cancer tumor progression and increases P-glycoprotein activity.

Prostate 2004 May 16
BACKGROUND: Currently, the main obstacle to curing advanced prostate cancer is development of androgen independence (AI), where malignant cells acquire the ability to survive in the absence of androgens. Our initial experimental approach used cDNA microarrays to characterize changes in gene expression in the LNCaP human prostate tumor model during progression to AI. The transcription factor Y-box binding protein (YB-1) was shown to be one of the genes upregulated. We focused on increased YB-1 expression during progression in clinical specimens, and further examined one of its downstream targets, P-glycoprotein (P-gp).

METHODS: Northern blot analysis was performed on LNCaP tumor series, as well as immunohistochemical analyses of human prostate cancer tissue samples. YB-1 was transiently transfected and transport analysis were performed to analyze P-gp efflux activity.

RESULTS: YB-1 expression is markedly increased during benign to malignant transformation and further following androgen ablation. In addition, increased YB-1 expression after castration in the LNCaP model is linked to upregulation of P-gp. We demonstrate that YB-1 upregulates P-gp activity resulting in a 40% intracellular decrease in the P-gp substrate vinblastine. We have also found that P-gp increases the efflux of the endogenous androgen, dihydrotestosterone (DHT), from prostate cells and leads to decreased androgen regulated gene expression.

CONCLUSIONS: We hypothesize that early in prostate cancer progression, increased expression of YB-1 may increase P-gp activity which may in turn lower androgen levels in the prostate tumor cells. Suppression of androgen levels may activate cell survival pathways and lead to an adaptive survival advantage of androgen independent prostate cancer cells following androgen ablation therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app