Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation.

Circulation 2004 March 31
BACKGROUND: Catheters are typically stiff and incorporate a pull-wire mechanism to allow tip deflection. While standing at the patient's side, the operator manually navigates the catheter in the heart using fluoroscopic guidance.

METHODS AND RESULTS: A total of 42 patients (32 female; mean age, 55+/-15 years) underwent ablation of common-type (slow/fast) or uncommon-type (slow/slow) atrioventricular nodal reentrant tachycardia (AVNRT) with the use of the magnetic navigation system Niobe (Stereotaxis, Inc). It consists of 2 computer-controlled permanent magnets located on opposite sides of the patient, which create a steerable external magnetic field (0.08 T). A small magnet embedded in the catheter tip causes the catheter to align and to be steered by the external magnetic field. A motor drive advances or retracts the catheter, enabling complete remote navigation. Radiofrequency current was applied with the use of a remote-controlled 4-mm, solid-tip, magnetic navigation-enabled catheter (55 degrees C, maximum 40 W, 60 seconds) in all patients. The investigators, who were situated in the control room, performed the ablation using a mean of 7.2+/-4.7 radiofrequency current applications (mean fluoroscopy time, 8.9+/-6.2 minutes; procedure duration, 145+/-43 minutes). Slow pathway ablation was achieved in 15 patients, whereas slow pathway modulation was the end point in the remaining patients. There were no complications.

CONCLUSIONS: The Niobe magnetic navigation system is a new platform technology allowing remote-controlled navigation of an ablation catheter. In conjunction with a motor drive unit, this system was used successfully to perform completely remote-controlled mapping and ablation in patients with AVNRT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app