Correlation of plasma oxidized low-density lipoprotein levels to vascular complications and human serum paraoxonase in patients with type 2 diabetes

Sachie Tsuzura, Yukio Ikeda, Tadashi Suehiro, Kikuko Ota, Fumiaki Osaki, Kaoru Arii, Yoshitaka Kumon, Kozo Hashimoto
Metabolism: Clinical and Experimental 2004, 53 (3): 297-302
The oxidative modification of low-density lipoprotein (LDL) plays a central role in the initiation and acceleration of atherosclerosis. Human serum paraoxonase (PON1) is associated with high-density lipoprotein (HDL) and has been shown to reduce the susceptibility of LDL to lipid peroxidation. We investigated whether circulating oxidized LDL (Ox-LDL) levels were associated with diabetic vascular complications, and whether the enzymatic activity and gene polymorphisms of PON1 influenced Ox-LDL concentrations in vivo. There was no difference in the plasma Ox-LDL concentrations between diabetic patients with and without macrovascular diseases. However, Ox-LDL concentrations corrected by LDL-cholesterol (OxLDL/LDL-C) or apolipoprotein B (apoB) concentrations (Ox-LDL/apoB), which probably reflect the proportion of oxidatively modified LDL to total LDL particles, were significantly higher in patients with macrovascular diseases than in those without. In addition, patients with peripheral neuropathy had a significantly higher Ox-LDL/apoB ratio than patients without this complication. The genotype TT of -108C/T polymorphism in the promoter region of the PON1 gene, which is associated with decreased PON1 expression, showed a significantly higher Ox-LDL/apoB ratio than genotypes TC or CC (TT: 0.60 +/- 0.15, CT + CC: 0.55 +/- 0.11, P =.02). Stepwise multiple regression analysis for Ox-LDL concentration revealed that the -108C/T polymorphism, subsequently to apoB concentration, was identified as a significant contributor. In summary, the Ox-LDL/apoB ratio was associated with macrovascular disease and peripheral neuropathy in Japanese patients with type 2 diabetes. Increased Ox-LDL/apoB may result, at least partly, from reduced serum antioxidant capacity in the diabetic state, including the attenuation of PON1 action. Increased Ox-LDL/apoB could be a significant marker for susceptibility to vascular complications in diabetic patients.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"