COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Investigation of the microstructure and mesotexture formed during thermomechanical controlled rolling in microalloyed steels.

Thermomechanical controlled rolling (TMCR) has been widely used as an effective method to improve the properties of steels. In the present paper, two commercial TMCR microalloyed steels were investigated. The grain size distributions and grain boundary misorientation angles were measured using electron backscattered diffraction patterns obtained using orientation imaging microscopy (OIM). The equivalent grain diameters were also measured using optical microscopy. Mixed coarse- and fine-grained regions were observed and the microhardness values were measured for both areas. Grain boundary misorientation angle distributions showed that the magnitude of mesotexture developed in the steel is dependent upon the rolling passes, the reduction ratio and the rolling temperatures including the finish rolling temperature. The surface layer, up to 2 mm depth, in Com-A steel had about 55% of grain boundaries with a misorientation angle below 12 degrees, much higher than in the central area ( approximately 30%), whereas Com-B steel showed similar distributions from the rolling surface to the centre. Misorientation results obtained from laboratory rolled steel plates with various TMCR procedures are also discussed as are OIM results from Charpy impact brittle fracture surfaces examining the effect of misorientation on crack propagation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app