JOURNAL ARTICLE
REVIEW
Immobilization osteoporosis in paraplegia.
The pathophysiology of osteoporosis as it relates to immobilization or disuse osteoporosis in paraplegics is briefly reviewed. The physiology of bone formation and resorption is discussed, and the influence of piezoelectric forces on bone integrity and the consequences of the loss of this effect in paraplegics is addressed. When bone is stressed, negative charges accumulate on the side from which the stress is applied and positive charges accumulate on the opposite side. Presumably the collagenous component of bone plays the major role in the generation of electrical potentials. Another mechanism important in the generation of electrical potentials is created by liquid planes streaming past solid planes. Diminished forces acting on bone, as in paraplegia, are translated into changes in the activity of bone remodeling units which can be assessed by histomorphic and histoenzymatic techniques. Other biochemical and endocrine consequences of immobilization involve increased serum calcium, decreased serum parathyroid hormone (PTH), and decreased dihydroxy-vitamin D synthesis. Urinary hydroxyproline and calcium excretion are increased, as is stool calcium. The bone loss that follows immobilization may produce an increased susceptibility to fractures involving long bones more than the spinal column, and is due more to decreased bone formation than to accelerated bone resorption. The treatment of immobilization osteoporosis primarily involves early remobilization, but other treatments, including the use of electrical fields and the administration of bisphosphonates, calcitonin, and a growth hormone are being actively investigated.
Full text links
Trending Papers
How to improve the efficiency and the safety of real-time ultrasound-guided central venous catheterization in 2023: a narrative review.Annals of Intensive Care 2023 May 26
SGLT2 Inhibitors: A New Therapeutical Strategy to Improve Clinical Outcomes in Patients with Chronic Kidney Diseases.International Journal of Molecular Sciences 2023 May 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app