COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

GAP-43 overexpression in adult mouse Purkinje cells overrides myelin-derived inhibition of neurite growth.

Up-regulation of growth-associated proteins in adult neurons promotes axon regeneration and neuritic elongation onto nonpermissive substrates. To investigate the interaction between these molecules and myelin-related inhibitory factors, we examined transgenic mice in which overexpression of the growth-associated protein GAP-43 is driven by the Purkinje cell-specific promoter L7. Contrary to their wild-type counterparts, which have extremely poor regenerative capabilities, axotomized transgenic Purkinje cells exhibit profuse sprouting along the intracortical neurite and at the severed stump [Buffo et al. (1997) J. Neurosci., 17, 8778-8791]. Here, we investigated the relationship between such sprouting axons and oligodendroglia to ask whether GAP-43 overexpression enables Purkinje neurites to overcome myelin-derived inhibition. Intact transgenic Purkinje axons display normal morphology and myelination. Following injury, however, many GAP-43-overexpressing neurite stumps are devoid of myelin cover and sprout into white matter regions containing densely packed myelin and Nogo-A- or MAG-immunopositive oligodendrocytes. The intracortical segments of these neurites show focal accumulations of GAP-43, which are associated with disrupted or retracted myelin sheaths. Numerous sprouts originate from such demyelinated segments and spread into the granular layer. Some myelin loss, though not axon sprouting, is also evident in wild-type mice, but this phenomenon is definitely more rapid and extensive in transgenic cerebella. Thus, GAP-43-overexpressing Purkinje axons are endowed with enhanced capabilities for growing into nonpermissive territories and show a pronounced tendency to lose myelin. Our observations suggest that accumulation of GAP-43 along precise axon segments disrupts the normal axon-glia interaction and enhances the retraction of oligodendrocytic processes to facilitate the outgrowth of neuritic sprouts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app