JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method.

Lab on a Chip 2003 November
This paper describes a direct write laser technology, which is fast and flexible, for fabricating multiple-level microfluidic channels. A high brightness diode-pumped Nd-YAG laser with slab geometry was used for its excellent beam quality. Channels with flat walls and staggered herringbone ridges on the floor have been successfully fabricated and their ability to perform passive mixing of liquid is discussed. Also, a multi-width multi-depth microchannel has been fabricated to generate biomimetic vasculatures whose channel diameters change according to Murray's law, which states that the cube of the radius of a parent vessel equals the sum of the cubes of the radii of the daughters. The multi-depth architecture allows for flow patterns to resemble physiological vascular systems with lower overall resistance and more uniform flow velocities throughout the network compared to planar patterning techniques which generate uniformly thin channels. The ability to directly fabricate multiple level structures using relatively straightforward laser technology enhances our ability to rapidly prototype complex lab-on-a-chip systems and to develop physiological microfluidic structures for tissue engineering and investigations in biomedical fluidics problems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app