The biomechanics of lumbar graded facetectomy under anterior-shear load

E C Teo, K K Lee, T X Qiu, H W Ng, K Yang
IEEE Transactions on Bio-medical Engineering 2004, 51 (3): 443-9
In this paper, an anatomically accurate three-dimensional finite-element (FE) model of the human lumbar spine (L2-L3) was used to study the biomechanical effects of graded bilateral and unilateral facetectomies of L3 under anterior shear. The intact L2-L3 FE model was validated under compression, tension, and shear loading and the predicted responses matched well with experimental data. The gross external (translational and coupled) responses, flexibilities, and facet load were delineated for these iatrogenic changes. Results indicted that unilateral facetectomy of greater than 75% and bilateral facetectomy of 75% or more resection markedly alter the translational displacement and flexibilities of the motion segment. This study suggests that fixation or fusion to restore strength and stability of the lumbar spine may be required for surgical intervention of greater than 75% facetectomy.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.