JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

In vivo imaging of beta-galactosidase activity using far red fluorescent switch.

Cancer Research 2004 March 2
beta-Galactosidase (beta-gal) has been widely used as a transgene reporter enzyme, and several substrates are available for its in vitro detection. The ability to image beta-gal expression in living animals would further extend the use of this reporter. Here we show that DDAOG, a conjugate of beta-galactoside and 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO), is not only a chromogenic beta-gal substrate but that the cleavage product has far-red fluorescence properties detectable by imaging. Importantly, the cleavage substrate shows a 50-nm red shift, enabling its specific detection in a background of intact probe, a highly desirable feature for in vivo imaging. Specifically, we show that beta-gal-expressing 9L gliomas are readily detectable by red fluorescence imaging in comparison with the native 9L gliomas. We furthermore show that herpes simplex virus amplicon-mediated LacZ gene transfer into tumors can be transiently and thus serially visualized over time. The results indicated that in vivo real-time detection of beta-gal activity is possible by fluorescence imaging technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app