CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes.

The purpose of the present study was to clarify the following: (1) whether steady state oxygen uptake (VO(2)) during exercise decreases after short-term intermittent hypoxia during a resting state in trained athletes and (2) whether the change in VO(2) during submaximal exercise is correlated to the change in endurance performance after intermittent hypoxia. Fifteen trained male endurance runners volunteered to participate in this study. Each subject was assigned to either a hypoxic group (n=8) or a control group (n=7). The hypoxic group spent 3 h per day for 14 consecutive days in normobaric hypoxia [12.3 (0.2)% inspired oxygen]. The maximal and submaximal exercise tests, a 3,000-m time trial, and resting hematology assessments at sea level were conducted before and after intermittent normobaric hypoxia. The athletes in both groups continued their normal training in normoxia throughout the experiment. VO(2) during submaximal exercise in the hypoxic group decreased significantly (P<0.05) following intermittent hypoxia. In the hypoxic group, the 3,000-m running time tended to improve (P=0.06) after intermittent hypoxia, but not in the control group. Neither peak VO(2) nor resting hematological parameters were changed in either group. There were significant (P<0.05) relationships between the change in the 3,000-m running time and the change in VO(2) during submaximal exercise after intermittent hypoxia. The results from the present study suggest that the enhanced running economy resulting from intermittent hypoxia could, in part, contribute to improved endurance performance in trained athletes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app