Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aberrant expressions of pathogenic phenotype in Alzheimer's diseased transgenic mice carrying NSE-controlled APPsw.

Mutations in the APP gene lead to enhanced cleavage by the beta- and gamma-secretase, and increased Abeta formation, which are tightly associated with Alzheimer's disease (AD)-like neuropathological changes. To examine whether depositions of Abeta by APP mutations are increased, and if this is associated with potential pathogenic phenotypes, the APPsw was expressed in a transgenic line under the control of the neuron-specific enolase (NSE) promoter. A behavioral dysfunction was shown at 12 months, and intensive staining bands, with APP and Abeta-42 antibodies, were visible in the brains of transgenic mice. Of the MAPK family, both JNK and p38 were activated in the brains of transgenic mice, whereas there was no significant activation of the ERK. In parallel, tau phosphorylation was also enhanced in the transgenic relative to the control mice. Moreover, the Cox-2 levels, from Western blot and immunostaining, were increased in the brains of the transgenic line. Furthermore, there were significant caspase-3- and TUNEL-stained nuclei in the transgenic line compared to the age-matched control mice. Thus, these results suggest that NSE-controlled APPsw transgenic mice appear to be a more relevant model in neuropathological phenotypes of AD, and thus could be useful in developing new therapeutic treatments for targeting the aberrant phenotypes that appear in these mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app