COMMENT
COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats.

We have previously reported that electrical stimulation delivered to the ventral part of the pedunculopontine tegmental nucleus (PPN) produced postural atonia in acutely decerebrated cats [Neuroscience 119 (2003) 293]. The present study was designed to elucidate synaptic mechanisms acting on motoneurons during postural atonia induced by PPN stimulation. Intracellular recording was performed from 72 hindlimb motoneurons innervating extensor and flexor muscles, and the changes in excitability of the motoneurons following the PPN stimulation were examined. Repetitive electrical stimulation (20-50 microA, 50 Hz, 5-10 s) of the PPN hyperpolarized the membrane potentials of both the extensor and flexor motoneurons by 2.0-12 mV (6.0 +/- 2.3 mV, n = 72). The membrane hyperpolarization persisted for 10-20 s even after termination of the stimulation. During the PPN stimulation, the membrane hyperpolarization was associated with decreases in the firing capability (n = 28) and input resistance (28.5 +/- 6.7%, n = 14) of the motoneurons. Moreover the amplitude of Ia excitatory postsynaptic potentials was also reduced (44.1 +/- 13.4%, n = 14). After the PPN stimulation, these parameters immediately returned despite that the membrane hyperpolarization persisted. Iontophoretic injections of chloride ions into the motoneurons reversed the polarity of the membrane hyperpolarization during the PPN stimulation. The polarity of the outlasting hyperpolarization however was not reversed. These findings suggest that a postsynaptic inhibitory mechanism, which was mediated by chloride ions, was acting on hindlimb motoneurons during PPN-induced postural atonia. However the outlasting motoneuron hyperpolarization was not due to the postsynaptic inhibition but it could be due to a decrease in the activity of descending excitatory systems. The functional role of the PPN in the regulation of postural muscle tone is discussed with respect to the control of behavioral states of animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app