JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Caffeic acid esters activate TREK-1 potassium channels and inhibit depolarization-dependent secretion.

In whole-cell and single-channel patch-clamp recordings from bovine adrenal fasciculata cells, it was discovered that selected caffeic acid derivatives dramatically enhanced the activity of background TREK-1 K+ channels. Cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate (CDC), activated TREK-1 when this agent was applied externally to cells or outside-out patches at concentrations of 5 to 10 microM. Structure/activity studies showed that native bTREK-1 channels were also activated by other caffeic acid esters, including caffeic acid phenethyl ester (CAPE), which contain a benzene or furan ring in the ester side chain. The activation of bTREK-1 by caffeic acid derivatives did not occur through inhibition of lipoxygenases because other potent lipoxygenase inhibitors failed to activate bTREK-1. In bovine adrenal zona fasciculata (AZF) cells, bTREK-1 K+ channels set the resting membrane potential. Inhibition of these channels by corticotropin leads to depolarization-dependent Ca2+ entry and cortisol secretion. CDC, which activates up to thousands of dormant bTREK-1 channels in AZF cells, was found to overwhelm the inhibition of bTREK-1 by corticotropin, reverse the membrane depolarization, and inhibit corticotropin-stimulated cortisol secretion. These results identify selected caffeic acid derivatives as novel K+ channel openers that activate TREK-1 background K+ channels. Because of their ability to stabilize the resting membrane potential and oppose electrical activity and depolarization-dependent Ca2+ entry, these compounds may have therapeutic potential as neuroprotective or cardioprotective agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app