JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors.

Toll-like receptors (TLRs) are sensors for the detection of invading infectious agents and can initiate innate immune responses. Because the innate immune system induces an appropriate defense against different pathogens, different TLR signaling domains may have unique properties that are responsible for eliciting distinctive responses to different types of pathogens. To test this hypothesis, we created ligand-regulated TLR chimeric receptors composed of the extracellular region of TLR4 and the transmembrane and cytoplasmic regions of other TLRs and expressed these chimeras in macrophages lacking endogenous TLR4. Interestingly, the chimeras between TLR4 and either TLR3, TLR7, or TLR9 were localized completely intracellularly whereas other chimeras were expressed on the cell surface. Lipopolysaccharide (LPS), a ligand for these chimeras, induced the activation of nuclear factor kappa B and mitogen-activated protein kinases and the subsequent production of pro-inflammatory cytokines in macrophages expressing TLR4, TLR4/TLR5, or TLR4/TLR8 chimeras but not in macrophages expressing TLR4/TLR1, TLR4/TLR2, or TLR4/TLR6 chimeras. Co-expression of unresponsive chimeras in some combinations (chimeras with TLR1+TLR2 or TLR2+TLR6 but not TLR1+TLR6) resulted in LPS responsiveness, indicating functional complementarity. Furthermore, the pair of TLR2+TLR6 chimera required approximately 10-fold less LPS to induce the same responses compared with the TLR1+TLR2 pair. Finally, LPS induced effective interferon-beta production and subsequent Stat1 phosphorylation in macrophages expressing full-length TLR4 but not other cell surface TLR chimeras. These results suggest that the functions of TLRs are diversified not only in their extracellular regions for ligand recognition but also in their transmembrane and cytoplasmic regions for subcellular localization and signaling properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app