Add like
Add dislike
Add to saved papers

Using a zeolite medium biofilter to remove organic pollutant and ammonia simultaneously.

A pilot scale zeolite medium biological aerated filter(ZBAF) was designed and used to treat municipal wastewater. It showed that ZBAF could simultaneously remove chemical oxygen demand(COD), ammonia-N and turbidity to satisfied degree at a hydraulic retention time(HRT) of 0.95 h. Their average removal efficiencies were 73.9%, 88.4% and 96.2% with the corresponding average effluent concentrations of 43.4 mg/L, 3.5 mg/L and 3.7 NTU, respectively. These effluent items met with the water quality standard of the treated water reused for cooling water. The COD removal volumetric loading rate increased proportionally with its applied volumetric loading rate with its maximum of 7.1 kg/(m3 x d). Ammonia-N removal loading rate also increased proportionally with its applied loading rate at HRT of longer than 0.95 h and the feasible maximum removal loading rate was 0.9 kg/(m3 x d). The COD loading rate did not affect the ammonia-N removal efficiency significantly when it was lower than 5.5 kg/(m3 x d). ZBAF has good application prospect for its low cost and high removal efficiency in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app