CLINICAL TRIAL
CONTROLLED CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Effects of training status and exercise intensity on phase II VO2 kinetics.

PURPOSE: To test the hypotheses that: 1) the time constant for the fast component of .VO2 kinetics (tau1) at exercise onset would be faster in trained than in untrained subjects for both moderate and heavy exercise, and that 2) tau1 would become progressively slower in untrained subjects at higher power outputs but be invariant in trained subjects.

METHODS: Eight untrained subjects (.VO2peak: 42.9 +/- 5.1 mL.kg-1.min-1) and seven trained cyclists (.VO2peak: 66.6 +/- 2.5 mL.kg-1.min-1) completed square-wave transitions to power outputs requiring 60% and 80% of gas exchange threshold (GET), and 50% of the difference between GET and .VO2 peak (50%Delta) from a baseline of "unloaded" cycling. .VO2 was measured breath-by-breath and individual responses were modeled using nonlinear regression techniques.

RESULTS: A repeated measures ANOVA revealed that the tau1 was significantly smaller (i.e., the kinetics were faster) in the trained compared with the untrained subjects and that tau1 became significantly greater (i.e., the kinetics were slowed) at higher power outputs both in the untrained (60%GET: 17.8 +/- 3.8 s, 80%GET: 21.5 +/- 6.6 s, and 50%Delta: 23.5 +/- 2.8 s) and the trained (60%GET: 8.9 +/- 1.3 s, 80%GET: 11.7 +/- 2.5 s, and 50%Delta: 15.2 +/- 2.0 s) subjects (P < 0.05).

CONCLUSION: Phase II .VO2 kinetics became progressively slower at higher power outputs in both trained and untrained subjects. That a greater tau1 was evident at a higher power output within the moderate exercise intensity domain (

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app