Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts.

Non-aromatizable androgens have significant beneficial effects on skeletal homeostasis independently of conversion to estradiol, but the effects of androgens on bone cell metabolism and cell proliferation are still poorly understood. Using an osteoblastic model with enhanced androgen responsiveness, MC3T3-E1 cells stably transfected with androgen receptor (AR) under the control of the type I collagen promoter (colAR-MC3T3), the effects of androgens on mitogenic signaling were characterized. Cultures were treated with the non-aromatizable androgen 5alpha-dihydrotestosterone (DHT) and the effects on osteoblast viability were determined as measured by an MTT assay. A complex response was observed in that continuous short-term DHT treatment enhanced osteoblast viability, but with longer-term DHT treatment inhibition was observed. The inhibition by DHT was prevented by the specific AR antagonist hydroxyflutamide, and was also observed in primary cultures of normal rat calvarial osteoblasts. In order to identify potential mediators of this effect, mitogenic pathway-specific cDNA microarrays were interrogated. Reduced hybridization of several genes important in MAP kinase-mediated signaling was observed, with the most dramatic effect on Elk-1 expression. Analysis of phosphorylation cascades demonstrated that DHT treatment inhibited phosphoERK1/2 levels, MAP kinase activation of Elk-1, Elk-1 protein and phosphoElk-1 levels, and downstream AP-1/luciferase reporter activity. Together, these data provide the first evidence that androgen inhibition of the MAP kinase signaling pathway is a potential mediator of osteoblast growth, and are consistent with the hypothesis that the MAP cascade may be a specific downstream target of DHT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app