Add like
Add dislike
Add to saved papers

Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury.

Journal of Pediatrics 2004 Februrary
OBJECTIVE: To determine possible exposure-associated delays in auditory brainstem evoked potential latencies as an objective measure of neurobehavioral toxicity in 14-year-old children with developmental exposure to methylmercury (MeHg) from seafood.

STUDY DESIGN: Prospective study of a birth cohort in the Faroe Islands, where 878 of eligible children (87%) were examined at age 14 years. Latencies of brainstem evoked potential peaks I, III, and V at 20 and 40 Hz constituted the outcome variables. Mercury concentrations were determined in cord blood and maternal hair, and in the child's hair at ages 7 and 14.

RESULTS: Latencies of peaks III and V increased by about 0.012 ms when the cord blood mercury concentration doubled. As seen at age 7 years, this effect appeared mainly within the I-III interpeak interval. Despite lower postnatal exposures, the child's hair mercury level at age 14 years was associated with prolonged III-V interpeak latencies. All benchmark dose results were similar to those obtained for dose-response relationships at age 7 years.

CONCLUSIONS: The persistence of prolonged I-III interpeak intervals indicates that some neurotoxic effects from intrauterine MeHg exposure are irreversible. A change in vulnerability to MeHg toxicity is suggested by the apparent sensitivity of the peak III-V component to recent MeHg exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app