Add like
Add dislike
Add to saved papers

Donor-acceptor (electronic) coupling in the precursor complex to organic electron transfer: intermolecular and intramolecular self-exchange between phenothiazine redox centers.

Intermolecular electron transfer (ET) between the free phenothiazine donor (PH) and its cation radical (PH*+) proceeds via the [1:1] precursor complex (PH)(2)*+ which is transiently observed for the first time by its diagnostic (charge-resonance) absorption band in the near-IR region. Similar intervalence (optical) transitions are also observed in mixed-valence cation radicals with the generic representation: P(br)P*+, in which two phenothiazine redox centers are interlinked by p-phenylene, o-xylylene, and o-phenylene (br) bridges. Mulliken-Hush analysis of the intervalence (charge-resonance) bands afford reliable values of the electronic coupling element H(IV) based on the separation parameters for (P/P*+) centers estimated from some X-ray structures of the intermolecular (PH)(2)*+ and the intramolecular P(br)P*+ systems. The values of H(IV), together with the reorganization energies lambda derived from the intervalence transitions, yield activation barriers DeltaG(ET)() and first-order rate constants k(ET) for electron-transfer based on the Marcus-Hush (two-state) formalism. Such theoretically based values of the intrinsic barrier and ET rate constants agree with the experimental activation barrier (E(a)) and the self-exchange rate constant (k(SE)) independently determined by ESR line broadening measurements. This convergence validates the use of the two-state model to adequately evaluate the critical electronic coupling elements between (P/P*+) redox centers in both (a) intermolecular ET via the precursor complex and (b) intramolecular ET within bridged mixed-valence cation radicals. Important to intermolecular ET mechanism is the intervention of the strongly coupled precursor complex since it leads to electron-transfer rates of self-exchange that are 2 orders of magnitude faster (and activation barrier that is substantially lower) than otherwise predicted solely on the basis of Marcus reorganization energy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app